Games, graphs, and machines

Partial orders 3

n	a(n)
0	v 1
1	✓ 1
2	✓ 3
3	19
4	219
5	4231
6	130023
7	6129859
8	431723379
9	44511042511
10	6611065248783
11	1396281677105899
12	414864951055853499
13	171850728381587059351
14	98484324257128207032183
15	77567171020440688353049939
16	83480529785490157813844256579
17	122152541250295322862941281269151
18	241939392597201176602897820148085023

a(n) =	Numbe	r of	
	portial	orders	on
	, برابر ک	· · 1 ^ Z .	
$\lambda(2)$			
• -> *	• ←		•
<u>ر</u> 2	- ۱	2 1	2

August 9, 2024

Chains

distinct

A chain in a poset is a sequence of elements a_1, \ldots, a_n such that

 $a_1 \preceq a_2 \preceq \cdots \preceq a_n$.

The number *n* is the *length* of the chain.

Find a chain of length 3 in the subset poset of $\{1, 2, 3, 4\}$.

Set of all subsets of
$$z_{1,2}, z_{1,4}$$

 $\ddot{\alpha}_{1} \in \ddot{\alpha}_{2} \subset \ddot{\alpha}_{3}$
 $\dot{\gamma}_{1} = \dot{\gamma}_{1,2} + \dot{\gamma}_{1,2}, z_{1,4}$
 $\dot{\gamma}_{1} = \dot{\gamma}_{21}$

Maximal chains

- What could be the meaning of a *maximal chain*?
- Find a maximal chain in the subset poset of $\{1, 2, 3, 4\}$.

Both

maximal

A poset in which all maximal chains have the same (finite) length is called a *graded poset*.

Theorem

If a poset is graded poset, then it has a rank function.

Verify the theorem for the subset poset of $\{1, \ldots, n\}$.

finile

Converse?

Theorem

If a poset is graded poset, then it has a rank function.

The converse of "If A then B" is "If B then A".

Is the converse of the theorem true?